submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







5/18/2011 10:18:38 AM
New form of girl's best friend is lighter than ever

By combining high pressure with high temperature, Livermore researchers have created a nanocyrstalline diamond aerogel that could improve the optics for something as big as a telescope or as small as the lenses in eyeglasses.

Aerogels are a class of materials that exhibit the lowest density, thermal conductivity, refractive index and sound velocity of any bulk solid. Aerogels are among the most versatile materials available for technical applications due to their many exceptional properties. This material has chemists, physicists, astronomers, and materials scientists utilizing its properties in myriad applications, from a water purifier for desalinizing seawater to installation on a NASA satellite as a meteorite particle collector.

In new research appearing in the May 9 online edition of the Proceedings of the National Academy of Sciences, a Livermore team created a diamond aerogel from a standard carbon-based aerogel precursor using a laser-heated diamond anvil cell.

A diamond anvil cell consists of two opposing diamonds with the sample compressed between them. It can compress a small piece of material (tens of micrometers or smaller) to extreme pressures, which can exceed 3 million atmospheres. The device has been used to recreate the pressure existing deep inside planets, creating materials and phases not observed under normal conditions. Since diamonds are transparent, intense laser light also can be focused onto the sample to simultaneously heat it to thousands of degrees.

A diamond aerogel has been hammered out of a microscopic anvil. Image by Kwei-Yu Chu/LLNL

The new form of diamond has a very low density similar to that of the precursor of around 40 milligrams per cubic centimeter, which is only about 40 times denser than air.

The diamond aerogel could have applications in antireflection coatings, a type of optical coating applied to the surface of lenses and other optical devices to reduce reflection. Less light is lost, improving the efficiency of the system. It can be applied to telescopes, binoculars, eyeglasses or any other device that may require reflection reduction. It also has potential applications in enhanced or modified biocompatibility, chemical doping, thermal conduction and electrical field emission.

In creating diamond aergoels, lead researcher Peter Pauzauskie, a former Lawrence fellow now at the University of Washington, infused the pores of a standard, carbon-based aerogel with neon, preventing the entire aerogel from collapsing on itself.

At that point, the team subjected the aerogel sample to tremendous pressures and temperatures (above 200,000 atmospheres and in excess of 2,240 degrees Fahrenheit), forcing the carbon atoms within to shift their arrangement and create crystalline diamonds.

The diamond anvil cell is small enough to fit in the palm of a hand, but it can compress a sample to extreme pressures -- up to about 3.6 million atmospheres at room temperature.

The success of this work also leads the team to speculate that additional novel forms of diamond may be obtained by exposing appropriate precursors to the right combination of high pressure and temperature.

Livermore researchers on the project include: Jonathan Crowhurst, Marcus Worsley, Ted Laurence, Yinmin "Morris" Wang, Trevor Wiley, Kenneth Visbeck, William Evans, Joseph Zaug and Joe Satcher Jr.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Other Headlines from Lawrence Livermore National Laboratory ...
 - New form of girl's best friend is lighter than ever
 - Livermore researchers develop battery-less chemical detector
 - Drilling down to the nanometer depths of leaves for biofuels
 - Livermore's DTEM earns innovation award from Microscopy Today
 - Peering into the never before seen

More Materials Headlines ...
 - Evidence for Graphene-Sheet-Driven Superconducting State in Graphite Intercalation Compounds
 - Miracle Material
 - UT physicist accelerates simulations of thin film growth
 - Improved Electrical Conductivity in Polymeric Composites
 - Artificial tissue promotes skin growth in wounds


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright � 2017 Nanotechwire.com | Privacy Policy |