submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







8/9/2010 6:55:46 PM
Award-winning supercomputer application solves superconductor puzzle

Superconducting materials, which transmit power resistance-free, are found to perform optimally when high- and low-charge density varies on the nanoscale level, according to research performed at the Department of Energy's Oak Ridge National Laboratory.

In research toward better understanding the dynamics behind high-temperature superconductivity, the ORNL scientists rewrote computational code for the numerical Hubbard model that previously assumed copper-compound superconducting materials known as cuprates to be homogenous — the same electron density — from atom to atom.

Lead author Thomas Maier and colleagues Gonzalo Alvarez, Michael Summers and Thomas Schulthess received the Association for Computing Machinery Gordon Bell Prize two years ago for their high-performance computing application. The application has now been used to examine the nanoscale inhomogeneities in superconductors that had long been noticed but left unexplained.

The paper is published in Physical Review Letters.

"Cuprates and other chemical compounds used as superconductors require very cold temperatures, nearing absolute zero, to transition from a phase of resistance to no resistance," said Jack Wells, director of the Office of Institutional Planning and a former Computational Materials Sciences group leader.

Liquid nitrogen is used to cool superconductors into phase transition. The colder the conductive material has to get to reach the resistance-free superconductor phase, the less efficient and more costly are superconductor power infrastructures. Such infrastructures include those used on magnetic levitation trains, hospital Magnetic Resonance Imaging, particle accelerators and some city power utilities.

In angle-resolved photoemission experiments and transport studies on a cuprate material that exhibits striped electronic inhomogeneity, scientists for years observed that superconductivity is heavily affected by the nanoscale features and in some respect even optimized.

"The goal following the Gordon Bell Prize was to take that supercomputing application and learn whether these inhomogenous stripes increased or decreased the temperature required to reach transition," Wells said. "By discovering that striping leads to a strong increase in critical temperature, we can now ask the question: is there an optimal inhomogeneity?"

In an ideal world, a material could become superconductive at an easily achieved and maintained low temperature, eliminating much of the accompanying cost of the cooling infrastructure.

"The next step in our progress is a hard problem," Wells said. "But from our lab's point of view, all of the major tools suited for studying this phenomenon — the computational codes we've written, the neutron scattering experiments that allow us to examine nanoscale properties — are available to us here."

The Center for Nanophase Materials Sciences at ORNL is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Other Headlines from Oak Ridge National Laboratory ...
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - ORNL energy harvesters transform waste into electricity
 - Nature still sets standard for nanoscience revolution
 - Neutron analysis yields insight into bacteria for solar energy
 - A hidden magnetic configuration in manganite thin films

More Research Headlines ...
 - Experiments Settle Long-Standing Debate about Mysterious Array Formations in Nanofilms
 - "Critical baby step" taken for spying life on a molecular scale
 - Seeing an atomic thickness
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - Karlsruhe Invisibility Cloak: Disappearing Visibly


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright © 2017 Nanotechwire.com | Privacy Policy |