submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







8/17/2008 2:46:40 PM
Hydrogels provide scaffolding for growth of bone cells

Hyaluronic hydrogels developed by Carnegie Mellon University researchers may provide a suitable scaffolding to enable bone regeneration. The hydrogels, created by Newell Washburn, Krzysztof Matyjaszewski and Jeffrey Hollinger, have proven to encourage the growth of preosteoblast cells, cells that aid the growth and development of bone. Doctoral student Sidi Bencherif will present this research, Sunday, Aug. 17 at the 236th national meeting of the American Chemical Society in Philadelphia.

Currently, physicians are able to treat patients with damaged bone tissue, like those who have bone fractures that fail to heal, using demineralized bone matrix, a biological material obtained from cadavers. Demineralized bone matrix is rich in growth factor proteins which signal bone cells in the area to multiply and form complex bone tissue, while other proteins in the matrix regulate the activity of the growth factors. Demineralized bone matrix is in limited supply, and because it comes from a human donor, there is a risk of transmitting viruses to the recipient.

"Tissue engineering is an exciting field. We're creating solutions to problems that can significantly impact people's quality of life," said Washburn, an assistant professor of chemistry and biomedical engineering at Carnegie Mellon. "These gels have great promise in not only regenerating bone, but serving as a gene therapy delivery system."

Members of the Washburn lab have been developing synthetic alternatives to demineralized bone matrix. In the work being presented today, they created a flexible hydrogel using biologically active and degradable hyaluronic acid. Hydrogels, which are considered to be the state-of-the-art in tissue design, are made from polymers that swell in water to form a gel-like material. They interact with growth factors much like demineralized bone matrix does, providing scaffolding for bone cells to proliferate and form new tissue. The researchers found that, in vitro, the hydrogels promoted cell proliferation, differentiation and mineralization of pre-osteoblast cells.

Further research by the group has created a hybrid hydrogel that incorporates a nanogel structure. This new hydrogel promotes the differentiation of cells, much like the hyaluronic acid gel while also releasing nanogels in a controlled and targeted manner. The researchers hope that this structure could be used to partner tissue engineering with gene therapy.

This work was funded by the National Tissue Engineering Center, the National Institutes of Health and a 3M Non-Tenured Faculty grant.

http://www.cmu.edu

Other Headlines from Carnegie Mellon University ...
 - Carnegie Mellon Researchers Electrify Polymerization
 - DSF Charitable Foundation GIves $3.9M to Support Center for Nucleic Acids Science and Technology
 - CMU's Bone Tissue Engineering Center Receives Defense Department Research Grant To Help Injured Soldiers
 - Carnegie Mellon Receives Funding To Create New Program Studying Environmental Impact of Nanotechnology
 - CMU Researchers Turn Up Brightness on Fluorescent Probes

More Research Headlines ...
 - Experiments Settle Long-Standing Debate about Mysterious Array Formations in Nanofilms
 - "Critical baby step" taken for spying life on a molecular scale
 - Seeing an atomic thickness
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - Karlsruhe Invisibility Cloak: Disappearing Visibly


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright 2014 Nanotechwire.com | Privacy Policy |