submit news    HOME | FEEDBACK  


- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials


- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events

Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here


11/5/2006 11:20:16 AM
Nanoscale Array Monitors Cellular Processes

Researchers at Tel-Aviv University in Israel have developed a lab-on-a-chip device that can incorporate enzymes and even living cells in a nanoscale array capable of monitoring electrochemical reactions. This device could prove invaluable in drug discovery and metabolism studies and as a diagnostic device for use at a patient’s bedside or in a doctor’s office.

Writing in the journal Sensors and Actuators B: Chemical, a research team headed by Yosi Shacham-Diamand, Ph.D., describes its efforts to merge the biochemical sensitivity of living cells with the monitoring ability of silicon-based microelectronics. The end-product of this research is a portable device consisting of two components: a disposable chip and a reader. The disposable silicon chip, constructed using standard microelectronic fabrication methods, contains an array of eight 100-nanoliter wells, each with three embedded electrodes independently wired to perform a wide variety of electrochemical measures. The reader is comprised of a multiplexed electrical monitor connected to a pocket-sized personal computer. The entire device weighs about two pounds, though the investigators note that it should be possible to further shrink the size and weight of the apparatus.

In one demonstration of the device’s utility, the investigators quantified levels of the enzyme alkaline phosphatase in nanoliter volume samples; evidence suggests that levels of this enzyme may be diagnostic for metastasis in breast and colon cancer patients. The researchers also showed that the device can be used to monitor circulating drug levels in real time, which could prove useful for determining whether patients are receiving optimal levels of anticancer agents.

In additional studies, the investigators showed that their device can monitor biochemical changes in cells grown in the nanoliter wells. Using bacteria, the researchers measured metabolic changes in response to chemical added to the bacterial growth medium. The researchers note that this approach should work with mammalian cells. They also suggest that it should be possible to develop an implantable version of this device that would be able to monitor cell responses to drug therapy, for example.

This work is detailed in a paper titled, “Electrochemical detection of biological reactions using a novel nano-bio-chip array.” An abstract of this paper is available at the journal’s website.

View abstract.

Other Headlines from NCI Alliance for Nanotechnology in Cancer ...
 - Tekmira and the National Cancer Institute Publish Promising Data Demonstrating the Anti-Tumor Activity of a Novel Cancer Target
 - NCI Awards $1.7 Million to Cancer Specialist at Children’s Hospital Los Angeles
 - Nanoparticles Enhance Detection of Circulating Tumor Cells
 - Hand-held NMR Instrument Yields Rapid Analysis of Human Tumors
 - Biodegradable Biopolymer Nanoparticles Hold Promise for Twin Attack on Breast Cancer

More Research Headlines ...
 - Experiments Settle Long-Standing Debate about Mysterious Array Formations in Nanofilms
 - "Critical baby step" taken for spying life on a molecular scale
 - Seeing an atomic thickness
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - Karlsruhe Invisibility Cloak: Disappearing Visibly

« Back To List »

- submit company
- submit news
- submit events
- advertise here

- More Events

Copyright © 2017 | Privacy Policy |