submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







8/10/2006 4:18:15 PM
Encoded metallic nanowires reveal bioweapons

When dangerous infectious diseases or biological weapons are suspected, fast help is required. The first step is a reliable, sensitive, and unambiguous, yet also fast and simple, identification of the pathogen; preferably, this test should be carried out on the spot, not in a laboratory. Portable miniature biodetection systems that can detect multiple pathogens simultaneously would be ideal for this task. American researchers from Lawrence Livermore National Laboratory led by Jeffrey Tok, in collaboration with groups at Stanford University, University of California at Davis, and Oxonica Inc (formerly Nanoplex Technologies Inc). have now developed a new basis for such a multiplex device: they are using silver and gold "striped" nanowires as supports for simultaneous immunological tests for various pathogens. Individual patterns of stripes act in the role of "barcodes". These "nanobarcoded" particles are manufactured by Oxonica Inc using template-assisted electrochemical deposition of metals within the tiny cylindrical pores of alumina membranes. When deposited gold and silver are alternated in a defined way, nanowires with different characteristic stripe patterns are produced. The pattern of optical reflections from each sequence of stripes can later be unambiguously recognized--just like a barcode.

Antibodies aimed at specific pathogens can be attached to these wires. For their test runs, Tok and his colleagues selected harmless model substances to stand in for anthrax spores, smallpox virus, and protein toxins such as ricin and botulinum toxin. If a simultaneous test for all of these is desired, the anthrax antibody would be attached to stripe pattern 1, the smallpox antibodies to stripe pattern 2, and the toxin antibodies to stripe pattern 3, for example. If the corresponding model pathogen is present in a sample, it is "recognized" and bound by its antibodies. At this point, free antibodies that have been tagged with a fluorescent dye are added to the sample. These also dock onto the pathogen so that it is surrounded like the filling in a sandwich; giving the technique its name, "sandwich immunoassay". Measurement of the fluorescence now gives information about the pathogen concentration. Analysis of the reflection pattern allows the "barcode" of the fluorescing nanowires to be read. If only wires with stripe pattern 1 fluoresce, for example, then the sample contains anthrax spores. One particular advantage of nanowires over other antibody supports is that the tests do not take place at a surface but instead in a suspension, which makes them run much faster and more accurately. If nickel stripes are also added to the ends of the wires, they can then be magnetically separated out during the required washing steps--a prerequisite for a portable microbiodetector.

Author: Jeffrey B.-H. Tok, Lawrence Livermore National Laboratory (USA) http://www-cms.llnl.gov/bios/tok_j.html

Title: Metallic Striped Nanowires as Multiplexed Immunoassay Platforms for Pathogen Detection

More Research Headlines ...
 - Experiments Settle Long-Standing Debate about Mysterious Array Formations in Nanofilms
 - "Critical baby step" taken for spying life on a molecular scale
 - Seeing an atomic thickness
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - Karlsruhe Invisibility Cloak: Disappearing Visibly


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright 2014 Nanotechwire.com | Privacy Policy |