submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







4/30/2006 2:03:50 PM
Targeted Nanoparticles Destroy Prostate Tumors

Biodegradable polymer nanoparticles, linked to a protein-binding nucleic acid known as an aptamer and loaded with the anticancer agent docetaxel, can target and kill prostate tumors growing in mice. Using this targeted nanoparticle to deliver docetaxel appears to reduce the toxic side effects associated with this drug.

Writing in the journal Proceedings of the National Academy of Sciences, a team of researchers led by Omid Farokhzad, M.D., of the Harvard Medical School, and Robert Langer, Ph.D., of the Massachusetts Institute of Technology, reported on its work developing custom nanoparticles that can home in on malignant cells and then enter the cells to deliver lethal doses of chemotherapy. Langer is co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence (CCNE) and Farokhzad is a project leader with the MIT-Harvard CCNE.

The team conducted experiments first on cultured tumor cells and then on mice bearing human prostate tumors, both with success. In the experiments with mice, the tumors shrank dramatically, and all of the treated mice survived the study. In contrast, only 57 percent of the animals treated with an untargeted nanoparticle survived for the duration of the study, and only 14 percent of the animals treated with docetaxel alone survived. "A single injection of our nanoparticles completely eradicated the tumors in five of the seven treated animals, and the remaining animals also had significant tumor reduction, compared to the controls," said Farokhzad.

In the study, Farokhzad, Langer and colleagues tailor-made tiny sponge-like nanoparticles laced with the drug docetaxel. The particles are specifically designed to dissolve in a cell's internal fluids, releasing the anticancer drug either rapidly or slowly, depending on what is needed to kill a particular type of tumor. These nanoparticles were purposely made from materials that are familiar and approved for medical applications by the U.S. Food and Drug Administration.

Also, to make sure only the malignant cells receive chemotherapy, the nanoparticles are "decorated" on the outside with targeting molecules called aptamers, small pieces of RNA that are designed to bind tightly to specific proteins, much as protein-based antibodies do. Like homing devices, the aptamers specifically recognize the surface molecules on cancer cells, while avoiding normal cells. In this case, the researchers used an aptamer that binds to prostate-specific membrane antigen, a well-characterized protein found on the surface of prostate cancer cells.

This work, which was funded in part by the National Cancer Institute, is detailed in a paper titled, “Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.” An investigator from the Gwangju Institute of Science and Technology in Korea also participated in this study. An abstract of this paper is available through PubMed.

View abstract.

Other Headlines from Harvard University ...
 - Engineers create vibrant colors in vertical silicon nanowires
 - Hand-held NMR Instrument Yields Rapid Analysis of Human Tumors
 - Oxford Nanopore announces licence agreement with Harvard University for graphene DNA sequencing
 - What ultra-tiny nanocircuits can do
 - Clay-armored bubbles may have formed first protocells

Other Headlines from Massachusetts Institute of Technology ...
 - Toward faster transistors
 - New sensor developed by MIT chemical engineers can detect tiny traces of explosives
 - Catching cancer with carbon nanotubes
 - Seeing below the surface
 - Koch Institute for Integrative Cancer Research dedicated at MIT

Other Headlines from NCI Alliance for Nanotechnology in Cancer ...
 - Tekmira and the National Cancer Institute Publish Promising Data Demonstrating the Anti-Tumor Activity of a Novel Cancer Target
 - NCI Awards $1.7 Million to Cancer Specialist at Children’s Hospital Los Angeles
 - Nanoparticles Enhance Detection of Circulating Tumor Cells
 - Hand-held NMR Instrument Yields Rapid Analysis of Human Tumors
 - Biodegradable Biopolymer Nanoparticles Hold Promise for Twin Attack on Breast Cancer

More Nanoparticles Headlines ...
 - UI study: Carbon black nanoparticles activate immune cells, causing cell death
 - Nanoparticles help scientists harvest light with solar fuels
 - Non-toxic nanoparticles may someday be used to fight cancer
 - 'DNAsomes' can deliver multiple drugs or genetic therapy
 - Building From the Ground Up, Researchers Construct RNA Nanoparticles to Safely Deliver Long-Lasting Therapy to Cells


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright © 2014 Nanotechwire.com | Privacy Policy |