submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







4/22/2006 10:55:48 PM
U of M researchers help uncover mystery evolutionary cycle of zeolite crystals

The porous, sieve-like minerals known as zeolites have been used for decades in purifiers, filters and other devices. Yet creating and refining a new type of zeolite is still a matter of sophisticated trial and error: No one has been able to figure out exactly how the crystals form, even in the laboratory.

Now, however, a team of chemists, engineers and mathematicians, using some of the most advanced microscopes in the research arsenal, has uncovered new details for the step-by-step evolution from molecular soup to carefully engineered zeolite crystal.

With this knowledge, laboratories may be able to use targeted methods to create zeolites with precisely the crystal sizes and shapes demanded by molecule-specific applications such as chemical sensing.

University of Minnesota chemical engineer Michael Tsapatsis, graduate student and lead author Tracy Davis, and their colleagues report their findings Apr. 17 online in Nature Materials. The research was supported by several National Science Foundation (NSF) grants.

Zeolites are familiar to consumers as, for example, the white crystals in aquarium filters or the ion-exchanging workhorses in advanced detergents. But their real economic impact is behind the scenes, where they are critical for extracting various chemical components out of petroleum and its byproducts on an industrial scale.

Zeolites accomplish this feat by trapping and removing specific target chemicals, which makes it easier for companies to purify the chemicals they want. So the challenge for researchers is to tailor a zeolite for each application that traps just the right set of chemicals. Ultimately, their goal is to control the structure, size and shape of the crystals well enough for zeolites to serve as sponges for hydrogen in fuel tanks, channels in next-generation sensors and separation membranes for chemical manufacturing.

“Controlling the growth of a certain crystal structure is difficult because it is done by trial and error, or what some critics may call a ‘mix, wait and see' approach,” said Tsapatsis. “Researchers have lacked a clear understanding of nucleation and growth processes that control formation of those zeolites and related organic-inorganic nanostructures.”

In an effort to improve that understanding, Tsapatisis and his colleagues have spent more than a year monitoring the growth of zeolites in a laboratory setting, where they could watch the crystal growth process in exquisite detail.

“These are complex structures containing hundreds of atoms per unit cell, and their formation is determined largely by kinetics,” said Tsapatsis. “Our approach is to slow down the kinetics and exhaustively study the evolution by all techniques available to us.”

The study showed that the zeolites form in a step-by-step, “hierarchical” fashion, with silicon-oxygen nanoparticles forming first. Those particles then aggregate into larger, more complex structures, incorporating other atoms and molecules while still leaving substantial pores and tunnels. Based on their findings, the researchers developed a set of mathematical equations that describe the nucleation and growth process.

“There are essentially unlimited opportunities for these crystals if we can control their pore structure and crystal shape, tailoring designs to specific applications ranging from catalysts to bio-implants,” Tsapatsis added.

While laboratory zeolites tend to exist as microcrystal powders, the researchers hope the new insight may help yield larger structures--even layers and thin films--that are perfect for optoelectronics, sensors and micro-reactors.

Funding for this work was provided by the NSF Directorate for Engineering Division for Chemical and Transport Systems, the Directorate for Mathematical and Physical Sciences Division for Materials Research and Division for Mathematical Sciences, and support through the NSF National Nanotechnology Infrastructure Network.

Other Headlines from University of Minnesota ...
 - University of Minnesota researchers clear major hurdle in road to high-efficiency solar cells
 - U of M researcher discovers how electricity moves through cells
 - U of M receives $16.8 million for materials research center
 - University of Minnesota signs agreement with nanotechnology company in flood-devastated Rushford
 - U of M researcher helps discover road to sustainable electronic devices

More Research Headlines ...
 - Experiments Settle Long-Standing Debate about Mysterious Array Formations in Nanofilms
 - "Critical baby step" taken for spying life on a molecular scale
 - Seeing an atomic thickness
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - Karlsruhe Invisibility Cloak: Disappearing Visibly


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright © 2014 Nanotechwire.com | Privacy Policy |