submit news    HOME | FEEDBACK  


- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials


- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events

Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here


10/29/2010 11:33:31 PM
Nanodrug Enables Image-Guided Breast Cancer Therapy

By combining an iron oxide nanoparticle, a tumor-targeting peptide, and a therapeutic nucleic acid into one construct, a team of investigators from the Massachusetts General Hospital and Harvard Medical School have created an agent that holds potential as targeted therapy for breast cancer. In addition, this new agent can be easily tracked in the body using standard magnetic resonance imaging (MRI).

Zdravka Medarova led this study. She and her colleagues published their results in the journal Cancer Research.

Dr. Medarova and her collaborators created their nanoparticle to bind to a tumor-specific molecules known as uMUC-1, which is found on the surface of over 90 percent of human breast tumors, and deliver a synthetic small interfering RNA (siRNA) molecule designed to shut down a specific gene - BIRC5 - that blocks cell death in most tumors and is associated with the development of drug resistance. The investigators also added a fluorescent dye to their nanoparticle to afford them the ability to track the nanoparticle using near-infrared spectroscopy. Because the nanoparticle itself is composed of superparamagnetic iron oxide, it is readily visible in MRI scans.

When added to breast cancer cells growing in culture, this nanoparticle construct had a profound impact on the expression of the BIRC5 gene, knocking down its expression. Both fluorescence imaging and MRI showed that the nanoparticle was taken up rapidly by the cells. Subsequent experiments showed that this construct had the same positive effect on both human pancreatic cancer cells and colon cancer cells.

Based on these initial results, the investigators injected the nanoparticles intravenously into mice bearing human breast tumors. The drug was administered on two separate occasions, a week apart. Both MRI and fluorescence imaging scans revealed that the nanoparticle accumulated preferentially in the tumors and that tumor levels remained high over the course of the two week experiment. Very little drug accumulated in muscle tissue surrounding the tumors.

When the tumors themselves were examined, the investigators found that the siRNA payload produced a five-fold increase in cell death compared to when animals were instead treated with a similar construct bearing a nonsense siRNA molecule even though the two nanoparticles accumulated to the same level in the tumors of treated animals. This result shows that the therapeutic effect of the construct is independent of its tumor targeting properties and is instead a result of its therapeutic siRNA payload.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Image-Guided Breast Tumor Therapy Using a Small Interfering RNA Nanodrug." An abstract of this paper is available at the journal's website.

View abstract

Other Headlines from Harvard University ...
 - Engineers create vibrant colors in vertical silicon nanowires
 - Hand-held NMR Instrument Yields Rapid Analysis of Human Tumors
 - Oxford Nanopore announces licence agreement with Harvard University for graphene DNA sequencing
 - What ultra-tiny nanocircuits can do
 - Clay-armored bubbles may have formed first protocells

Other Headlines from Massachusetts Institute of Technology ...
 - Toward faster transistors
 - New sensor developed by MIT chemical engineers can detect tiny traces of explosives
 - Catching cancer with carbon nanotubes
 - Seeing below the surface
 - Koch Institute for Integrative Cancer Research dedicated at MIT

Other Headlines from NCI Alliance for Nanotechnology in Cancer ...
 - Tekmira and the National Cancer Institute Publish Promising Data Demonstrating the Anti-Tumor Activity of a Novel Cancer Target
 - NCI Awards $1.7 Million to Cancer Specialist at Childrenís Hospital Los Angeles
 - Nanoparticles Enhance Detection of Circulating Tumor Cells
 - Hand-held NMR Instrument Yields Rapid Analysis of Human Tumors
 - Biodegradable Biopolymer Nanoparticles Hold Promise for Twin Attack on Breast Cancer

More Bio/Medicine Headlines ...
 - Researchers create nanopatch for the heart
 - Scientists Design New Anti-Flu Virus Proteins Using Computational Methods
 - New X-ray method for understanding brain disorders better
 - Nanomedicine: Loading up a cure
 - CEA-Leti and 5 Partners Collaborating On Self-Powered Cardiac Pacemaker

« Back To List »

- submit company
- submit news
- submit events
- advertise here

- More Events

Copyright © 2017 | Privacy Policy |